Thermal Conductivity Measurement and Prediction from Geophysical Well Log Parameters with Borehole Application ## RONALD GOSS JIM COMBS Institute for Geosciences, The University of Texas at Dallas, P.O. Box 688, Richardson, Texas 75080, USA | ABSTRACT Problems related to thermal conductivity measurements of rocks_were examined using the divided-bar method. | relatively time consuming and expensive. The most common method for the determination of the thermal conductivity of earth materials is the divided-bar apparatus (Birch, 1950). | |--|--| | | • | | <u></u> | | | | | | <u> </u> | | | <u> </u> | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | And the second s | | | | | | | | | <u> </u> | | | | | | a. View of the control contro | | | | | | <u>L</u> | | primarily an instrument effect. If it is assumed that all of the change is due to the effect of pressure on the reference thermal conductivity K_R^* , then use of the "true" reference conductivity which is a function of pressure, $K_R = f(P)$, attempted here if all sample ends are similarly prepared and theoretical assumptions are verified. The above method provides a reliable estimation of the slope for the pressure effects, but each curve (Fig. 3) must For measurements on borehole grab samples of drill chips and unconsolidated sediments, a cell arrangement similar to that described by Sass, Lachenbruch, and Munroe (1971) was used. The cell device essentially constitutes a new of the U.S. Bureau of Reclamation (USBR) Mesa No. 5-1 geothermal well, and eight sets of values are from the shallow zone (200 to 800 m) of the USBR Mesa No. 6-1 well. These Mesa samples are representative of the unconsolidated | Table 1. | Data from | laboratory | measurements | of | cores. | |----------|-----------|------------|--------------|----|--------| | | | | | | | | Table 1. Data from laboratory measurements of cores. | | | | | | | | | | | | |---|--|--|---|--|---|---|---|--|--|--|--| | Identification | $\left(\frac{K}{\text{mcal}}\right)$ | $\left(\frac{D_B}{\text{cm}^3}\right)$ | Ф
(%) | k
(mdarc) | ρ
(ohm·m) | $\left(\frac{\rho}{0.05 \text{ ohm} \cdot \text{m}}\right)$ | $\left(\frac{mmhos}{m}\right)$ | $\left(\frac{V_P}{\text{sec}}\right)$ | $\left(\frac{V_{\rm s}}{\rm km}\right)$ | FF1
(%) | | | UCR-1
UCR-2
UCR-3
UCR-4
UCR-5
UCR-6 | 10.0
10.0
7.60
9.99
8.45
9.76 | 2.47
2.49
2.35
2.46
2.40 | 9.56
8.62
12.9
10.4
13.1 | OWR 1 core do
0.76
0.50
350
15.0
470 | ata from 100
16.7
23.6
3.25
8.04
3.24 | 0 to 300 meters
334
472
65.0
161
64.8 | 59.9
42.4
308
124
309
188
170 | 5.09
5.07
4.63
5.03
4.91
4.86
4.33 | 3.17
3.23
2.60
3.13
2.87 | 8.33
6.52
11.1
8.61
10.0 | | | UCR-7 | 9.00
8 1 | 2.43 | 12.4
19 F | 1.3 | 5.88
n en | 118
cc c | 353
361
368
5.18
63.3 | 4.01
3.98
3.88
5.54
4.94
5.49 | 2.57 | 9.12 | | | UCR-9
UCR-10
UCR-11
UCR-13
UCR-14
UCR-15
UCR-16
UCR-17
UCR-18
UCR-19
UCR-20
UCR-21
UCR-21 | 8.13
8.16
10.1
10.2
10.0
10.3
10.8
10.0
10.4
10.0
10.5
10.1
10.6 | 2.36
2.36
2.56
2.47
2.56
2.55
2.54
2.53
2.55
2.51
2.53
2.53 | 16.3
16.5
3.93
9.66
4.16
3.14
5.32
5.90
4.64
7.64
6.74
6.44
6.35
UCR 115 | 14.0
39.0
0.01
0.56
0.08
0.02
0.02
0.01
0.16
0.02
0.38
0.08
core data, a f | 2.77
2.72
193
15.8
497
445
154
58.2
90.1
23.8
29.7
31.7
41.8
ew meters for | 55.4
54.4
3860
316
9940
8900
3080
1160
1800
476
594
634
836
rom Dunes hole | 2.25
6.49
17.2
11.1
42.0
33.7
37.91
23.9 | 5.54
5.34
5.34
5.38
5.10
5.35
5.29
5.09
5.25
5.31
5.31
3.79
3.94
4.65 | 2.22
2.15
3.49
3.03
3.52
3.56
3.49
3.30
3.32
3.37
3.36
3.32
3.31
2.05
2.08
2.64 | 4.11
11.2
2.91
7.45
3.53
2.78
4.21
4.77
3.23
5.97
4.60
5.07
4.92 | | | | | | | | | <u> </u> | | | | | | | 115-B
115-C
115-D | 10.3
9.67
10.1 | 2.53
2.53
2.60 | 3.99
4.13
3.86 | 0.01
0.03
0.02 | 584
402
336 | 11700
8040
6720 | 529
1.71
2.49
2.98 | 4.77
3.81
4.75
4.72
6.98
5.10 | 2.22
2.03
2.42
2.40
3.76
2.84 | 3.21
3.37
2.87 | | | , | Drill cuttings and borehole logged measurements* | | | | | | | | | | | | | | D_{B} | | "k"
est. by
SARABAND | ρ
deep | →F | σ | | Temp
(°C) | | | | *-
}
1 | | <u>.</u> | | | | | 140
140
140
240
170 | 2.83
3.40 | | | | | V ₁ n | | | | | | | 630
940
770 | | | | | 03 bined the granulte into and advertion $$K = 1.30 \exp(0.58 D_D + 0.40 S_w)$$ (12) where S_w is the fractional water saturation and D_D is the bulk density in the dry state. Using core from a wide region of the Siberian lowlands, Moiseyenko and coworkers (1970) derived the relation $$K = [1.17 + 0.83 (3.42 - 0.55 \Phi)] 10^{-3}$$ (13) D are the thermal conductivity, porosity, and density, respectively, with subscripts D, L, and G, for dry rock, saturating liquid, and gas (air), respectively; m, an empirical parameter, is the cementation factor of Archie's formula $$F = A/\Phi^m \tag{19}$$ with A another empirical parameter. Most of the relationships presented above are deficient where the term in parentheses is for the dry conductivity, for the same samples; instead values, from the literature | 6,6 | 52/18 | 9.7 | |-----|---------|-----| | 4.9 | 11/11 | 6.7 | | 4.0 | 7.8/8.7 | 4.9 | | 2.4 | 9.1/9.1 | 2.9 | | | , | | *Requires assumed-dry density $D_D = D_B = 0.01 \, \Phi$, saturation $S_W = 1.0$, and/or solid conductivity $K_S = 4.5 \, \text{Btu/ft·hr·°F}$ if sample is predominately quartz and 3.5 if significant clay in sample. Values based on discussion of Somerton, Keese, and Chu, (1974). †Requires an assumption for gas conductivity