Thermal Conductivity Measurement and Prediction from Geophysical Well Log Parameters with Borehole Application

RONALD GOSS JIM COMBS

Institute for Geosciences, The University of Texas at Dallas, P.O. Box 688, Richardson, Texas 75080, USA

ABSTRACT Problems related to thermal conductivity measurements of rocks_were examined using the divided-bar method.	relatively time consuming and expensive. The most common method for the determination of the thermal conductivity of earth materials is the divided-bar apparatus (Birch, 1950).
	•
<u></u>	
<u> </u>	
<u> </u>	
· · · · · · · · · · · · · · · · · · ·	
And the second s	
<u> </u>	
a. View of the control of the contro	
<u>L</u>	

primarily an instrument effect. If it is assumed that all of the change is due to the effect of pressure on the reference thermal conductivity K_R^* , then use of the "true" reference conductivity which is a function of pressure, $K_R = f(P)$,

attempted here if all sample ends are similarly prepared and theoretical assumptions are verified.

The above method provides a reliable estimation of the slope for the pressure effects, but each curve (Fig. 3) must

For measurements on borehole grab samples of drill chips and unconsolidated sediments, a cell arrangement similar to that described by Sass, Lachenbruch, and Munroe (1971) was used. The cell device essentially constitutes a new

of the U.S. Bureau of Reclamation (USBR) Mesa No. 5-1 geothermal well, and eight sets of values are from the shallow zone (200 to 800 m) of the USBR Mesa No. 6-1 well. These Mesa samples are representative of the unconsolidated

Table 1.	Data from	laboratory	measurements	of	cores.

Table 1. Data from laboratory measurements of cores.											
Identification	$\left(\frac{K}{\text{mcal}}\right)$	$\left(\frac{D_B}{\text{cm}^3}\right)$	Ф (%)	k (mdarc)	ρ (ohm·m)	$\left(\frac{\rho}{0.05 \text{ ohm} \cdot \text{m}}\right)$	$\left(\frac{mmhos}{m}\right)$	$\left(\frac{V_P}{\text{sec}}\right)$	$\left(\frac{V_{\rm s}}{\rm km}\right)$	FF1 (%)	
UCR-1 UCR-2 UCR-3 UCR-4 UCR-5 UCR-6	10.0 10.0 7.60 9.99 8.45 9.76	2.47 2.49 2.35 2.46 2.40	9.56 8.62 12.9 10.4 13.1	OWR 1 core do 0.76 0.50 350 15.0 470	ata from 100 16.7 23.6 3.25 8.04 3.24	0 to 300 meters 334 472 65.0 161 64.8	59.9 42.4 308 124 309 188 170	5.09 5.07 4.63 5.03 4.91 4.86 4.33	3.17 3.23 2.60 3.13 2.87	8.33 6.52 11.1 8.61 10.0	
UCR-7	9.00 8 1	2.43	12.4 19 F	1.3	5.88 n en	118 cc c	353 361 368 5.18 63.3	4.01 3.98 3.88 5.54 4.94 5.49	2.57	9.12	
UCR-9 UCR-10 UCR-11 UCR-13 UCR-14 UCR-15 UCR-16 UCR-17 UCR-18 UCR-19 UCR-20 UCR-21 UCR-21	8.13 8.16 10.1 10.2 10.0 10.3 10.8 10.0 10.4 10.0 10.5 10.1 10.6	2.36 2.36 2.56 2.47 2.56 2.55 2.54 2.53 2.55 2.51 2.53 2.53	16.3 16.5 3.93 9.66 4.16 3.14 5.32 5.90 4.64 7.64 6.74 6.44 6.35 UCR 115	14.0 39.0 0.01 0.56 0.08 0.02 0.02 0.01 0.16 0.02 0.38 0.08 core data, a f	2.77 2.72 193 15.8 497 445 154 58.2 90.1 23.8 29.7 31.7 41.8 ew meters for	55.4 54.4 3860 316 9940 8900 3080 1160 1800 476 594 634 836 rom Dunes hole	2.25 6.49 17.2 11.1 42.0 33.7 37.91 23.9	5.54 5.34 5.34 5.38 5.10 5.35 5.29 5.09 5.25 5.31 5.31 3.79 3.94 4.65	2.22 2.15 3.49 3.03 3.52 3.56 3.49 3.30 3.32 3.37 3.36 3.32 3.31 2.05 2.08 2.64	4.11 11.2 2.91 7.45 3.53 2.78 4.21 4.77 3.23 5.97 4.60 5.07 4.92	
						<u> </u>					
115-B 115-C 115-D	10.3 9.67 10.1	2.53 2.53 2.60	3.99 4.13 3.86	0.01 0.03 0.02	584 402 336	11700 8040 6720	529 1.71 2.49 2.98	4.77 3.81 4.75 4.72 6.98 5.10	2.22 2.03 2.42 2.40 3.76 2.84	3.21 3.37 2.87	
,	Drill cuttings and borehole logged measurements*										
		D_{B}		"k" est. by SARABAND	ρ deep	→F	σ		Temp (°C)		
*- } 1		<u>.</u>					140 140 140 240 170	2.83 3.40			
V ₁ n							630 940 770				

03

bined the granulte into and advertion

$$K = 1.30 \exp(0.58 D_D + 0.40 S_w)$$
 (12)

where S_w is the fractional water saturation and D_D is the bulk density in the dry state. Using core from a wide region of the Siberian lowlands, Moiseyenko and coworkers (1970) derived the relation

$$K = [1.17 + 0.83 (3.42 - 0.55 \Phi)] 10^{-3}$$
 (13)

D are the thermal conductivity, porosity, and density, respectively, with subscripts D, L, and G, for dry rock, saturating liquid, and gas (air), respectively; m, an empirical parameter, is the cementation factor of Archie's formula

$$F = A/\Phi^m \tag{19}$$

with A another empirical parameter.

Most of the relationships presented above are deficient

where the term in parentheses is for the dry conductivity,

for the same samples; instead values, from the literature

6,6	52/18	9.7
4.9	11/11	6.7
4.0	7.8/8.7	4.9
2.4	9.1/9.1	2.9
	,	

*Requires assumed-dry density $D_D = D_B = 0.01 \, \Phi$, saturation $S_W = 1.0$, and/or solid conductivity $K_S = 4.5 \, \text{Btu/ft·hr·°F}$ if sample is predominately quartz and 3.5 if significant clay in sample. Values based on discussion of Somerton, Keese, and Chu, (1974). †Requires an assumption for gas conductivity

